
Chapter 1

Background to Electronic Materials

1.1 Introduction to Semiconductors1

note: This module is adapted from the Connexions module entitled Introduction to Semiconduc-
tors by Bill Wilson.

If we only had to worry about simple conductors, life would not be very complicated, but on the other
hand we wouldn't be able to make computers, CD players, cell phones, i-Pods and a lot of other things
which we have found to be useful. We will now move on, and talk about another class of conductors called
semiconductors.

In order to understand semiconductors and in fact to get a more accurate picture of how metals, or
normal conductors actually work, we really have to resort to quantum mechanics. Electrons in a solid are
very tiny objects, and it turns out that when things get small enough, they no longer exactly following the
classical "Newtonian" laws of physics that we are all familiar with from everyday experience. It is not the
purpose of this course to teach quantum mechanics, so what we are going to do instead is describe the results
which come from looking at the behavior of electrons in a solid from a quantum mechanical point of view.

Solids (at least the ones we will be talking about, and especially semiconductors) are crystalline materials,
which means that they have their atoms arranged in a ordered fashion. We can take silicon (the most
important semiconductor) as an example. Silicon is a group 14(IV) element, which means it has four
electrons in its outer or valence shell. Silicon crystallizes in a structure called the diamond crystal lattice,
shown in Figure 1.1. Each silicon atom has four covalent bonds, arranged in a tetrahedral formation about
the atom center.

1This content is available online at <http://cnx.org/content/m33647/1.3/>.
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4 CHAPTER 1. BACKGROUND TO ELECTRONIC MATERIALS

Figure 1.1: Crystal structure of silicon.

In two dimensions, we can schematically represent a piece of single-crystal silicon as shown in Figure 1.2.
Each silicon atom shares its four valence electrons with valence electrons from four nearest neighbors, �lling
the shell to 8 electrons, and forming a stable, periodic structure. Once the atoms have been arranged like
this, the outer valence electrons are no longer strongly bound to the host atom. The outer shells of all of
the atoms blend together and form what is called a band. The electrons are now free to move about within
this band, and this can lead to electrical conductivity as we discussed earlier.

Figure 1.2: A 2-D representation of a silicon crystal.

This is not the complete story however, for it turns out that due to quantum mechanical e�ects, there is
not just one band which holds electrons, but several of them. What will follow is a very qualitative picture
of how the electrons are distributed when they are in a periodic solid, and there are necessarily some details
which we will be forced to gloss over. On the other hand this will give you a pretty good picture of what is
going on, and may enable you to have some understanding of how a semiconductor really works. Electrons
are not only distributed throughout the solid crystal spatially, but they also have a distribution in energy
as well. The potential energy function within the solid is periodic in nature. This potential function comes
from the positively charged atomic nuclei which are arranged in the crystal in a regular array. A detailed
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analysis of how electron wave functions, the mathematical abstraction which one must use to describe how
small quantum mechanical objects behave when they are in a periodic potential, gives rise to an energy
distribution somewhat like that shown in Figure 1.3.

Figure 1.3: Schematic of the �rst two bands in a periodic solid showing energy levels and bands.

Firstly, unlike the case for free electrons, in a periodic solid, electrons are not free to take on any energy
value they wish. They are forced into speci�c energy levels called allowed states, which are represented by
the cups in Figure 1.3. The allowed states are not distributed uniformly in energy either. They are grouped
into speci�c con�gurations called energy bands. There are no allowed levels at zero energy and for some
distance above that. Moving up from zero energy, we then encounter the �rst energy band. At the bottom
of the band there are very few allowed states, but as we move up in energy, the number of allowed states
�rst increases, and then falls o� again. We then come to a region with no allowed states, called an energy
band gap. Above the band gap, another band of allowed states exists. This goes on and on, with any given
material having many such bands and band gaps. This situation is shown schematically in Figure 1.3, where
the small cups represent allowed energy levels, and the vertical axis represents electron energy.

It turns out that each band has exactly 2N allowed states in it, where N is the total number of atoms
in the particular crystal sample we are talking about. (Since there are 10 cups in each band in the �gure, it
must represent a crystal with just 5 atoms in it. Not a very big crystal at all!) Into these bands we must
now distribute all of the valence electrons associated with the atoms, with the restriction that we can only
put one electron into each allowed state. This is the result of something called the Pauli exclusion principle.
Since in the case of silicon there are 4 valence electrons per atom, we would just �ll up the �rst two bands,
and the next would be empty. If we make the logical assumption that the electrons will �ll in the levels with
the lowest energy �rst, and only go into higher lying levels if the ones below are already �lled. This situation
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6 CHAPTER 1. BACKGROUND TO ELECTRONIC MATERIALS

is shown in Figure 1.4, in which we have represented electrons as small black balls with a "-" sign on them.
Indeed, the �rst two bands are completely full, and the next is empty. What will happen if we apply an
electric �eld to the sample of silicon? Remember the diagram we have at hand right now is an energy based
one, we are showing how the electrons are distributed in energy, not how they are arranged spatially. On
this diagram we can not show how they will move about, but only how they will change their energy as a
result of the applied �eld. The electric �eld will exert a force on the electrons and attempt to accelerate
them. If the electrons are accelerated, then they must increase their kinetic energy. Unfortunately, there are
no empty allowed states in either of the �lled bands. An electron would have to jump all the way up into
the next (empty) band in order to take on more energy. In silicon, the gap between the top of the highest
most occupied band and the lowest unoccupied band is 1.1 eV. (One eV is the potential energy gained by
an electron moving across an electrical potential of one volt.) The mean free path or distance over which
an electron would normally move before it su�ers a collision is only a few hundred angstroms (ca. 300 x
10-8 cm) and so you would need a very large electric �eld (several hundred thousand V/cm) in order for the
electron to pick up enough energy to "jump the gap". This makes it appear that silicon would be a very bad
conductor of electricity, and in fact, very pure silicon is very poor electrical conductor.

Figure 1.4: Silicon, with �rst two bands full and the next empty.

A metal is an element with an odd number of valence electrons so that a metal ends up with an upper
band which is just half full of electrons. This is illustrated in Figure 1.5. Here we see that one band is
full, and the next is just half full. This would be the situation for the Group 13(III) element aluminum for
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instance. If we apply an electric �eld to these carriers, those near the top of the distribution can indeed
move into higher energy levels by acquiring some kinetic energy of motion, and easily move from one place
to the next. In reality, the whole situation is a bit more complex than we have shown here, but this is not
too far from how it actually works.

Figure 1.5: Electron distribution for a metal or good conductor.

So, back to our silicon sample. If there are no places for electrons to "move" into, then how does silicon
work as a "semiconductor"? Well, in the �rst place, it turns out that not all of the electrons are in the bottom
two bands. In silicon, unlike say quartz or diamond, the band gap between the top-most full band, the next
empty one is not so large. As we mentioned above it is only about 1.1 eV. So long as the silicon is not at
absolute zero temperature, some electrons near the top of the full band can acquire enough thermal energy
that they can "hop" the gap, and end up in the upper band, called the conduction band. This situation is
shown in Figure 1.6.
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8 CHAPTER 1. BACKGROUND TO ELECTRONIC MATERIALS

Figure 1.6: Thermal excitation of electrons across the band gap.

In silicon at room temperature, roughly 1010 electrons per cubic centimeter are thermally excited across
the band-gap at any one time. It should be noted that the excitation process is a continuous one. Electrons
are being excited across the band, but then they fall back down into empty spots in the lower band. On
average however, the 1010 in each cm3 of silicon is what you will �nd at any given instant. Now 10 billion
electrons per cubic centimeter seems like a lot of electrons, but lets do a simple calculation. The mobility
of electrons in silicon is about 1000 cm2/V.s. Remember, mobility times electric �eld yields the average
velocity of the carriers. Electric �eld has units of V/cm, so with these units we get velocity in cm/s as we
should. The charge on an electron is 1.6 x 10-19 coulombs. Thus from (1.1):

(1.1)

If we have a sample of silicon 1 cm long by (1 mm x 1mm) square, it would have a resistance, (1.2), which
does not make it much of a "conductor". In fact, if this were all there was to the silicon story, we could pack
up and move on, because at any reasonable temperature, silicon would conduct electricity very poorly.

(1.2)
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1.2 Doped Semiconductors2

note: This module is adapted from the Connexions module entitled Doped Semiconductors by
Bill Wilson.

To see how we can make silicon a useful electronic material, we will have to go back to its crystal structure
(Figure 1.7). Suppose somehow we could substitute a few atoms of phosphorus for some of the silicon atoms.

Figure 1.7: A two dimensional representation of a silicon crystal lattice "doped" with phosphorus.

If you sneak a look at the periodic table, you will see that phosphorus is a group V element, as compared
with silicon which is a group 14(IV) element. What this means is the phosphorus atom has �ve outer or
valence electrons, instead of the four which silicon has. In a lattice composed mainly of silicon, the extra
electron associated with the phosphorus atom has no "mating" electron with which it can complete a shell,
and so is left loosely dangling to the phosphorus atom, with relatively low binding energy. In fact, with the
addition of just a little thermal energy (from the natural or latent heat of the crystal lattice) this electron
can break free and be left to wander around the silicon atom freely. In our "energy band" picture, we have
something like what we see in Figure 1.8. The phosphorus atoms are represented by the added cups with
P's on them. They are new allowed energy levels which are formed within the "band gap" near the bottom
of the �rst empty band. They are located close enough to the empty (or "conduction") band, so that the
electrons which they contain are easily excited up into the conduction band. There, they are free to move
about and contribute to the electrical conductivity of the sample. Note also, however, that since the electron
has left the vicinity of the phosphorus atom, there is now one more proton than there are electrons at the
atom, and hence it has a net positive charge of 1q. We have represented this by putting a little "+" sign in
each P-cup. Note that this positive charge is �xed at the site of the phosphorous atom called a donor since
it "donates" an electron up into the conduction band, and is not free to move about in the crystal.

2This content is available online at <http://cnx.org/content/m33703/1.2/>.

Available for free at Connexions <http://cnx.org/content/col10719/1.9>



10 CHAPTER 1. BACKGROUND TO ELECTRONIC MATERIALS

Figure 1.8: Silicon doped with phosphorus.

How many phosphorus atoms do we need to signi�cantly change the resistance of our silicon? Suppose
we wanted our 1 mm by 1 mm square sample to have a resistance of one ohm as opposed to more than 60
MΩ. Turning the resistance equation around we get, (1.3). And hence, if we continue to assume an electron
mobility of 1000 cm2/volt.sec, (1.4).

(1.3)

(1.4)

Now adding more than 6 x 1017 phosphorus atoms per cubic centimeter might seem like a lot of phosphorus,
until you realize that there are almost 1024 silicon atoms in a cubic centimeter and hence only one in every
1.6 million silicon atoms has to be changed into a phosphorus one to reduce the resistance of the sample from
several 10s of MΩ down to only one Ω. This is the real power of semiconductors. You can make dramatic
changes in their electrical properties by the addition of only minute amounts of impurities. This process is
called doping the semiconductor. It is also one of the great challenges of the semiconductor manufacturing
industry, for it is necessary to maintain fantastic levels of control of the impurities in the material in order
to predict and control their electrical properties.

Again, if this were the end of the story, we still would not have any calculators, cell phones, or stereos,
or at least they would be very big and cumbersome and unreliable, because they would have to work using
vacuum tubes. We now have to focus on the few "empty" spots in the lower, almost full band (called the
valence band.) We will take another view of this band, from a somewhat di�erent perspective. I must confess
at this point that what I am giving you is even further from the way things really work, then the "cups
at di�erent energies" picture we have been using so far. The problem is, that in order to do things right,
we have to get involved in momentum phase-space, a lot more quantum mechanics, and generally a bunch
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of math and concepts we don't really need in order to have some idea of how semiconductor devices work.
What follow below is really intended as a motivation, so that you will have some feeling that what we state
as results, is actually reasonable.

Consider Figure 1.9. Here we show all of the electrons in the valence, or almost full band, and for
simplicity show one missing electron. Let's apply an electric �eld, as shown by the arrow in the �gure. The
�eld will try to move the (negatively charged) electrons to the left, but since the band is almost completely
full, the only one that can move is the one right next to the empty spot, or hole as it is called.

Figure 1.9: Band full of electrons, with one missing.

One thing you may be worrying about is what happens to the electrons at the ends of the sample. This
is one of the places where we are getting a somewhat distorted view of things, because we should really be
looking in momentum, or wave-vector space rather than "real" space. In that picture, they magically drop
o� one side and "reappear" on the other. This doesn't happen in real space of course, so there is no easy
way we can deal with it.

A short time after we apply the electric �eld we have the situation shown in Figure 1.10, and a little while
after that we have Figure 1.11. We can interpret this motion in two ways. One is that we have a net �ow of
negative charge to the left, or if we consider the e�ect of the aggregate of all the electrons in the band we
could picture what is going on as a single positive charge, moving to the right. This is shown in Figure 1.12.
Note that in either view we have the same net e�ect in the way the total net charge is transported through
the sample. In the mostly negative charge picture, we have a net �ow of negative charge to the left. In the
single positive charge picture, we have a net �ow of positive charge to the right. Both give the same sign for
the current!
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12 CHAPTER 1. BACKGROUND TO ELECTRONIC MATERIALS

Figure 1.10: Motion of the "missing" electron with an electric �eld.

Figure 1.11: Further motion of the "missing electron" spot.

Figure 1.12: Motion of a "hole" due to an applied electric �eld.
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Thus, it turns out, we can consider the consequences of the empty spaces moving through the co-ordinated
motion of electrons in an almost full band as being the motion of positive charges, moving wherever these
empty spaces happen to be. We call these charge carriers "holes" and they too can add to the total conduction
of electricity in a semiconductor. Using ρ to represent the density (in cm-3 of spaces in the valence band and
µe and µh to represent the mobility of electrons and holes respectively (they are usually not the same) we
can modify to give the conductivity σ, when both electrons' holes are present, (1.5).

(1.5)

How can we get a sample of semiconductor with a lot of holes in it? What if, instead of phosphorus, we
dope our silicon sample with a group III element, say boron? This is shown in Figure 1.13. Now we have
some missing orbitals, or places where electrons could go if they were around. This modi�es our energy
picture as follows in Figure 1.14. Now we see a set of new levels introduced by the boron atoms. They are
located within the band gap, just a little way above the top of the almost full, or valence band. Electrons
in the valence band can be thermally excited up into these new allowed levels, creating empty states, or
holes, in the valence band. The excited electrons are stuck at the boron atom sites called acceptors, since
they "accept" an electron from the valence band, and hence act as �xed negative charges, localized there.
A semiconductor which is doped predominantly with acceptors is called p-type, and most of the electrical
conduction takes place through the motion of holes. A semiconductor which is doped with donors is called
n-type, and conduction takes place mainly through the motion of electrons.

Figure 1.13: A two dimensional representation of a silicon crystal lattice doped with boron.
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14 CHAPTER 1. BACKGROUND TO ELECTRONIC MATERIALS

Figure 1.14: P-type silicon, due to boron acceptors.

In n-type material, we can assume that all of the phosphorous atoms, or donors, are fully ionized when
they are present in the silicon structure. Since the number of donors is usually much greater than the native,
or intrinsic electron concentration, (≈ 1010 cm-3), if Nd is the density of donors in the material, then n, the
electron concentration, ≈ Nd. If an electron de�cient material such as boron is present, then the material
is called p-type silicon, and the hole concentration is just ≈ Na the concentration of acceptors, since these
atoms "accept" electrons from the valence band.

If both donors and acceptors are in the material, then which ever one has the higher concentration wins
out. This is called compensation. If there are more donors than acceptors then the material is n-type and n
≈ Nd - Na. If there are more acceptors than donors then the material is p-type and p ≈ Na - Nd. It should
be noted that in most compensated material, one type of impurity usually has a much greater (several order
of magnitude) concentration than the other, and so the subtraction process described above usually does
not change things very much, e.g., 1018 - 1016 ≈ 1018.

One other fact which you might �nd useful is that, again, because of quantum mechanics, it turns out
that the product of the electron and hole concentration in a material must remain a constant. In silicon at
room temperature:

(1.6)

Thus, if we have an n-type sample of silicon doped with 1017 donors per cubic centimeter, then n, the electron
concentration is just p , the hole concentration, is 1020/1017 = 103 cm-3. The carriers which dominate a
material are called majority carriers, which would be the electrons in the above example. The other carriers
are called minority carriers (the holes in the example) and while 103 might not seem like much compared
to 1017 the presence of minority carriers is still quite important and can not be ignored. Note that if the
material is undoped, then it must be that n = p and n = p = 1010.

The picture of "cups" of di�erent allowed energy levels is useful for gaining a pictorial understanding of
what is going on in a semiconductor, but becomes somewhat awkward when you want to start looking at
devices which are made up of both n and p type silicon. Thus, we will introduce one more way of describing
what is going on in our material. The picture shown in Figure 1.15 is called a band diagram. A band
diagram is just a representation of the energy as a function of position with a semiconductor device. In a
band diagram, positive energy for electrons is upward, while for holes, positive energy is downwards. That
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is, if an electron moves upward, its potential energy increases just as a with a normal mass in a gravitational
�eld. Also, just as a mass will "fall down" if given a chance, an electron will move down a slope shown in
a band diagram. On the other hand, holes gain energy by moving downward and so they have a tendancy
to "�oat" upward if given the chance - much like a bubble in a liquid. The line labeled Ev in Figure 1.15
shows the edge of the conduction band, or the bottom of the lowest unoccupied allowed band, while Ev is the
top edge of the valence, or highest occupied band. The band gap, Eg for the material is obviously Ec - Ev.
The dotted line labeled Ef is called the Fermi level and it tells us something about the chemical equilibrium
energy of the material, and also something about the type and number of carriers in the material. More on
this later. Note that there is no zero energy level on a diagram such as this. We often use either the Fermi
level or one or other of the band edges as a reference level on lieu of knowing exactly where "zero energy"
is located.

Figure 1.15: An electron band-diagram for a semiconductor.

The distance (in energy) between the Fermi level and either Ec and Ev gives us information concerning
the density of electrons and holes in that region of the semiconductor material. The details, once again, will
have to be begged o� on grounds of mathematical complexity. It turns out that you can say:

(1.7)

(1.8)

Both Nc and Nv are constants that depend on the material you are talking about, but are typically on the
order of 1019 cm-3. The expression in the denominator of the exponential is just Boltzman's constant (8.63
x 10-5 eV/K), k, times the temperature T of the material (in absolute temperature or Kelvin). At room
temperature kT = 1/40 of an electron volt. Look carefully at the numerators in the exponential. Note �rst
that there is a minus sign in front, which means the bigger the number in the exponent, the fewer carriers
we have. Thus, the top expression says that if we have n-type material, then Ef must not be too far away
from the conduction band, while if we have p-type material, then the Fermi level,Ef must be down close to
the valence band. The closer Ef gets to Ec the more electrons we have. The closer Ef gets to Ev, the more
holes we have. Figure 1.15 therefore must be for a sample of n-type material. Note also that if we know how
heavily a sample is doped (i.e., we know what Nd is) and from the fact that n ≈ Nd we can use to �nd out
how far away the Fermi level is from the conduction band, (1.9).

(1.9)
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To help further in our ability to picture what is going on, we will often add to this band diagram, some small
signed circles to indicate the presence of mobile electrons and holes in the material. Note that the electrons
are spread out in energy. From our "cups" picture we know they like to stay in the lower energy states if
possible, but some will be distributed into the higher levels as well. What is distorted here is the scale. The
band-gap for silicon is 1.1 eV, while the actual spread of the electrons would probably only be a few tenths
of an eV, not nearly as much as is shown in Figure 1.16. Lets look at a sample of p-type material, just for
comparison. Note that for holes, increasing energy goes down not up, so their distribution is inverted from
that of the electrons. You can kind of think of holes as bubbles in a glass of soda or beer, they want to �oat
to the top if they can. Note also for both n and p-type material there are also a few "minority" carriers, or
carriers of the opposite type, which arise from thermal generation across the band-gap.

Figure 1.16: Band diagram for an n-type semiconductor.

1.3 Di�usion3

note: This module is adapted from the Connexions module entitled Di�usion by Bill Wilson.

1.3.1 Introduction

Let us turn our attention to what happens to the electrons and holes once they have been injected across a
forward-biased junction. We will concentrate just on the electrons which are injected into the p-side of the
junction, but keep in mind that similar things are also happening to the holes which enter the n-side.

When electrons are injected across a junction, they move away from the junction region by a di�usion
process, while at the same time, some of them are disappearing because they are minority carriers (electrons
in basically p-type material) and so there are lots of holes around for them to recombine with. This is all
shown schematically in Figure 1.17.

3This content is available online at <http://cnx.org/content/m33730/1.2/>.
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Figure 1.17: Processes involved in electron transport across a p-n junction.

1.3.2 Di�usion process quanti�ed

It is actually fairly easy to quantify this, and come up with an expression for the electron distribution within
the p-region. First we have to look a little bit at the di�usion process however. Imagine that we have a
series of bins, each with a di�erent number of electrons in them. In a given time, we could imagine that all
of the electrons would �ow out of their bins into the neighboring ones. Since there is no reason to expect
the electrons to favor one side over the other, we will assume that exactly half leave by each side. This is all
shown in Figure 1.18. We will keep things simple and only look at three bins. Imagine there are 4, 6, and
8 electrons respectively in each of the bins. After the required "emptying time," we will have a net �ux of
exactly one electron across each boundary as shown.

Figure 1.18: A schematic representation of a di�usion problem.

Now let's raise the number of electrons to 8, 12 and 16 respectively (Figure 1.19). We �nd that the net
�ux across each boundary is now 2 electrons per emptying time, rather than one. Note that the gradient
(slope) of the concentration in the boxes has also doubled from one per box to two per box. This leads
us to a rather obvious statement that the �ux of carriers is proportional to the gradient of their density.
This is stated formally in what is known as Fick's First Law of Di�usion, (1.10). Where De is simply a
proportionality constant called the di�usion coe�cient. Since we are talking about the motion of electrons,
this di�usion �ux must give rise to a current density Jediff . Since an electron has a charge −q associated
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18 CHAPTER 1. BACKGROUND TO ELECTRONIC MATERIALS

with it, (1.11).

Flux = (−De)
dn (x)
dx

(1.10)

Jediff = qDe
dn

dx
(1.11)

Figure 1.19: A schematic representation of a di�usion from bins.

Now we have to invoke something called the continuity equation. Imagine we have a volume (V ) which
is �lled with some charge (Q). It is fairly obvious that if we add up all of the current density which is �owing
out of the volume that it must be equal to the time rate of decrease of the charge within that volume. This
ideas is expressed in the formula below which uses a closed-surface integral, along with the all the other
integrals to follow: ∮

S

JdS = −dQ
dt

(1.12)

We can write Q as, (1.13), where we are doing a volume integral of the charge density (ρ ) over the volume
(V ). Now we can use Gauss' theorem which says we can replace a surface integral of a quantity with a
volume integral of its divergence, (1.14).

Q =
∮
V

ρ (v) dV (1.13)

∮
S

JdS =
∫
div (J) dV (1.14)

So, combining (1.12), (1.13) and (1.14), we have, (1.15).∫
div (J) dV = −

∫
dρ

dt
dV (1.15)

Finally, we let the volume V shrink down to a point, which means the quantities inside the integral must
be equal, and we have the di�erential form of the continuity equation (in one dimension), (1.16).

div (J) = ∂J
∂x

= −dρ(x)
dt

(1.16)
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1.3.3 What about the electrons?

Now let's go back to the electrons in the diode. The electrons which have been injected across the junction
are called excess minority carriers, because they are electrons in a p-region (hence minority) but their
concentration is greater than what they would be if they were in a sample of p-type material at equilibrium.
We will designate them as n', and since they could change with both time and position we shall write them
as n'(x,t). Now there are two ways in which n'(x,t) can change with time. One would be if we were to stop
injecting electrons in from the n-side of the junction. A reasonable way to account for the decay which would
occur if we were not supplying electrons would be to write:

d

dt
n′ (x, t) = −n

′ (x, t)
τr

(1.17)

Where τr called the minority carrier recombination lifetime. It is pretty easy to show that if we start
out with an excess minority carrier concentration n0' at t = 0, then n'(x,t) will go as, (1.18). But, the
electron concentration can also change because of electrons �owing into or out of the region x. The electron
concentration n'(x,t) is just ρ(x,t)

q . Thus, due to electron �ow we have, (1.19).

n′ (x, t) = n′0e
−t
τr (1.18)

d
dtn
′ (x, t) = 1

q
dρ(x,t)
dt

= 1
qdiv (J (x, t))

(1.19)

But, we can get an expression for J (x, t) from (1.11). Reducing the divergence in (1.19) to one dimension
(we just have a ∂J

∂x ) we �nally end up with, (1.20).

d

dt
n′ (x, t) = De

d2n′ (x, t)
dx2

(1.20)

Combining (1.20) and (1.17) (electrons will, after all, su�er from both recombination and di�usion) and we
end up with:

d

dt
n′ (x, t) = De

d2n′ (x, t)
dx2

− n′ (x, t)
τr

(1.21)

This is a somewhat specialized form of an equation called the ambipolar di�usion equation. It seems
kind of complicated but we can get some nice results from it if we make some simply boundary condition
assumptions.

1.3.3.1 Using the ambipolar di�usion equation

For anything we will be interested in, we will only look at steady state solutions. This means that the time
derivative on the LHS of (1.21) is zero, and so letting n′ (x, t) become simply n′ (x) since we no longer have
any time variation to worry about, we have:

d2

dt2
n′ (x)− 1

Deτr
n′ (x) = 0 (1.22)

Picking the not unreasonable boundary conditions that n′ (0) = n0 (the concentration of excess electrons
just at the start of the di�usion region) and n′ (x) → 0 as x → ∞ (the excess carriers go to zero when we
get far from the junction) then:

n (x) = n0e
− x√

Deτr (1.23)

The expression in the radical
√
Deτr is called the electron di�usion length, Le, and gives us some idea as to

how far away from the junction the excess electrons will exist before they have more or less all recombined.
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This will be important for us when we move on to bipolar transistors. A typical value for the di�usion
coe�cient for electrons in silicon would be De = 25 cm2/sec and the minority carrier lifetime is usually
around a microsecond. As shown in (1.24) this is not very far at all.

Le =
√
Deτr

=
√

25× 10−6

= 5× 10−3cm

(1.24)

1.4 Crystal Structure4

1.4.1 Introduction

In any sort of discussion of crystalline materials, it is useful to begin with a discussion of crystallography: the
study of the formation, structure, and properties of crystals. A crystal structure is de�ned as the particular
repeating arrangement of atoms (molecules or ions) throughout a crystal. Structure refers to the internal
arrangement of particles and not the external appearance of the crystal. However, these are not entirely
independent since the external appearance of a crystal is often related to the internal arrangement. For
example, crystals of cubic rock salt (NaCl) are physically cubic in appearance. Only a few of the possible
crystal structures are of concern with respect to simple inorganic salts and these will be discussed in detail,
however, it is important to understand the nomenclature of crystallography.

1.4.2 Crystallography

1.4.2.1 Bravais lattice

The Bravais lattice is the basic building block from which all crystals can be constructed. The concept
originated as a topological problem of �nding the number of di�erent ways to arrange points in space where
each point would have an identical �atmosphere�. That is each point would be surrounded by an identical set
of points as any other point, so that all points would be indistinguishable from each other. Mathematician
Auguste Bravais discovered that there were 14 di�erent collections of the groups of points, which are known as
Bravais lattices. These lattices fall into seven di�erent "crystal systems�, as di�erentiated by the relationship
between the angles between sides of the �unit cell� and the distance between points in the unit cell. The
unit cell is the smallest group of atoms, ions or molecules that, when repeated at regular intervals in three
dimensions, will produce the lattice of a crystal system. The �lattice parameter� is the length between two
points on the corners of a unit cell. Each of the various lattice parameters are designated by the letters a, b,
and c. If two sides are equal, such as in a tetragonal lattice, then the lengths of the two lattice parameters
are designated a and c, with b omitted. The angles are designated by the Greek letters α, β, and γ, such that
an angle with a speci�c Greek letter is not subtended by the axis with its Roman equivalent. For example,
α is the included angle between the b and c axis.

Table 1.1 shows the various crystal systems, while Figure 1.20 shows the 14 Bravais lattices. It is
important to distinguish the characteristics of each of the individual systems. An example of a material that
takes on each of the Bravais lattices is shown in Table 1.2.

4This content is available online at <http://cnx.org/content/m16927/1.10/>.
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System Axial lengths and angles Unit cell geometry

cubic a = b = c, α = β = γ= 90 ◦

tetragonal a = b 6= c, α = β = γ= 90 ◦

orthorhombic a 6= b 6= c, α = β = γ= 90 ◦

rhombohedral a = b = c, α = β = γ 6= 90 ◦

hexagonal a = b 6= c, α = β = 90 ◦, γ = 120 ◦

monoclinic a 6= b 6= c, α = γ = 90 ◦, β 6= 90 ◦

triclinic a 6= b 6= c, α 6= β 6= γ

Table 1.1: Geometrical characteristics of the seven crystal systems.
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Figure 1.20: Bravais lattices.
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Crystal system Example

triclinic K2S2O8

monoclinic As4S4, KNO2

rhombohedral Hg, Sb

hexagonal Zn, Co, NiAs

orthorhombic Ga, Fe3C

tetragonal In, TiO2

cubic Au, Si, NaCl

Table 1.2: Examples of elements and compounds that adopt each of the crystal systems.

The cubic lattice is the most symmetrical of the systems. All the angles are equal to 90 ◦, and all the
sides are of the same length (a = b = c). Only the length of one of the sides (a) is required to describe
this system completely. In addition to simple cubic, the cubic lattice also includes body-centered cubic and
face-centered cubic (Figure 1.20). Body-centered cubic results from the presence of an atom (or ion) in the
center of a cube, in addition to the atoms (ions) positioned at the vertices of the cube. In a similar manner,
a face-centered cubic requires, in addition to the atoms (ions) positioned at the vertices of the cube, the
presence of atoms (ions) in the center of each of the cubes face.

The tetragonal lattice has all of its angles equal to 90 ◦, and has two out of the three sides of equal length
(a = b). The system also includes body-centered tetragonal (Figure 1.20).

In an orthorhombic lattice all of the angles are equal to 90 ◦, while all of its sides are of unequal length.
The system needs only to be described by three lattice parameters. This system also includes body-centered
orthorhombic, base-centered orthorhombic, and face-centered orthorhombic (Figure 1.20). A base-centered
lattice has, in addition to the atoms (ions) positioned at the vertices of the orthorhombic lattice, atoms
(ions) positioned on just two opposing faces.

The rhombohedral lattice is also known as trigonal, and has no angles equal to 90 ◦, but all sides are of
equal length (a = b = c), thus requiring only by one lattice parameter, and all three angles are equal (α =
β = γ).

A hexagonal crystal structure has two angles equal to 90 ◦, with the other angle ( γ) equal to 120 ◦. For
this to happen, the two sides surrounding the 120 ◦ angle must be equal (a = b), while the third side (c) is
at 90 ◦ to the other sides and can be of any length.

The monoclinic lattice has no sides of equal length, but two of the angles are equal to 90 ◦, with the
other angle (usually de�ned as β) being something other than 90 ◦. It is a tilted parallelogram prism with
rectangular bases. This system also includes base-centered monoclinic (Figure 1.20).

In the triclinic lattice none of the sides of the unit cell are equal, and none of the angles within the unit
cell are equal to 90 ◦. The triclinic lattice is chosen such that all the internal angles are either acute or
obtuse. This crystal system has the lowest symmetry and must be described by 3 lattice parameters (a, b,
and c) and the 3 angles (α, β, and γ).

1.4.2.2 Atom positions, crystal directions and Miller indices

1.4.2.2.1 Atom positions and crystal axes

The structure of a crystal is de�ned with respect to a unit cell. As the entire crystal consists of repeating unit
cells, this de�nition is su�cient to represent the entire crystal. Within the unit cell, the atomic arrangement
is expressed using coordinates. There are two systems of coordinates commonly in use, which can cause
some confusion. Both use a corner of the unit cell as their origin. The �rst, less-commonly seen system is
that of Cartesian or orthogonal coordinates (X, Y, Z). These usually have the units of Angstroms and relate
to the distance in each direction between the origin of the cell and the atom. These coordinates may be
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manipulated in the same fashion are used with two- or three-dimensional graphs. It is very simple, therefore,
to calculate inter-atomic distances and angles given the Cartesian coordinates of the atoms. Unfortunately,
the repeating nature of a crystal cannot be expressed easily using such coordinates. For example, consider
a cubic cell of dimension 3.52 Å. Pretend that this cell contains an atom that has the coordinates (1.5, 2.1,
2.4). That is, the atom is 1.5 Å away from the origin in the x direction (which coincides with the a cell axis),
2.1 Å in the y (which coincides with the b cell axis) and 2.4 Å in the z (which coincides with the c cell axis).
There will be an equivalent atom in the next unit cell along the x-direction, which will have the coordinates
(1.5 + 3.52, 2.1, 2.4) or (5.02, 2.1, 2.4). This was a rather simple calculation, as the cell has very high
symmetry and so the cell axes, a, b and c, coincide with the Cartesian axes, X, Y and Z. However, consider
lower symmetry cells such as triclinic or monoclinic in which the cell axes are not mutually orthogonal. In
such cases, expressing the repeating nature of the crystal is much more di�cult to accomplish.

Accordingly, atomic coordinates are usually expressed in terms of fractional coordinates, (x, y, z). This
coordinate system is coincident with the cell axes (a, b, c) and relates to the position of the atom in terms
of the fraction along each axis. Consider the atom in the cubic cell discussion above. The atom was 1.5 Å in
the a direction away from the origin. As the a axis is 3.52 Å long, the atom is (1.5/3.52) or 0.43 of the axis
away from the origin. Similarly, it is (2.1/3.52) or 0.60 of the b axis and (2.4/3.5) or 0.68 of the c axis. The
fractional coordinates of this atom are, therefore, (0.43, 0.60, 0.68). The coordinates of the equivalent atom
in the next cell over in the a direction, however, are easily calculated as this atom is simply 1 unit cell away
in a. Thus, all one has to do is add 1 to the x coordinate: (1.43, 0.60, 0.68). Such transformations can be
performed regardless of the shape of the unit cell. Fractional coordinates, therefore, are used to retain and
manipulate crystal information.

1.4.2.2.2 Crystal directions

The designation of the individual vectors within any given crystal lattice is accomplished by the use of whole
number multipliers of the lattice parameter of the point at which the vector exits the unit cell. The vector
is indicated by the notation [hkl], where h, k, and l are reciprocals of the point at which the vector exits
the unit cell. The origination of all vectors is assumed de�ned as [000]. For example, the direction along the
a-axis according to this scheme would be [100] because this has a component only in the a-direction and no
component along either the b or c axial direction. A vector diagonally along the face de�ned by the a and b
axis would be [110], while going from one corner of the unit cell to the opposite corner would be in the [111]
direction. Figure 1.21 shows some examples of the various directions in the unit cell. The crystal direction
notation is made up of the lowest combination of integers and represents unit distances rather than actual
distances. A [222] direction is identical to a [111], so [111] is used. Fractions are not used. For example, a
vector that intercepts the center of the top face of the unit cell has the coordinates x = 1/2, y = 1/2, z =
1. All have to be inversed to convert to the lowest combination of integers (whole numbers); i.e., [221] in
Figure 1.21. Finally, all parallel vectors have the same crystal direction, e.g., the four vertical edges of the
cell shown in Figure 1.21 all have the crystal direction [hkl] = [001].
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Figure 1.21: Some common directions in a cubic unit cell.

Crystal directions may be grouped in families. To avoid confusion there exists a convention in the choice
of brackets surrounding the three numbers to di�erentiate a crystal direction from a family of direction. For
a direction, square brackets [hkl] are used to indicate an individual direction. Angle brackets <hkl> indicate
a family of directions. A family of directions includes any directions that are equivalent in length and types
of atoms encountered. For example, in a cubic lattice, the [100], [010], and [001] directions all belong to the
<100> family of planes because they are equivalent. If the cubic lattice were rotated 90 ◦, the a, b, and c
directions would remain indistinguishable, and there would be no way of telling on which crystallographic
positions the atoms are situated, so the family of directions is the same. In a hexagonal crystal, however,
this is not the case, so the [100] and [010] would both be <100> directions, but the [001] direction would be
distinct. Finally, negative directions are identi�ed with a bar over the negative number instead of a minus
sign.

1.4.2.2.3 Crystal planes

Planes in a crystal can be speci�ed using a notation called Miller indices. The Miller index is indicated by
the notation [hkl] where h, k, and l are reciprocals of the plane with the x, y, and z axes. To obtain the
Miller indices of a given plane requires the following steps:

Step 1. The plane in question is placed on a unit cell.
Step 2. Its intercepts with each of the crystal axes are then found.
Step 3. The reciprocal of the intercepts are taken.
Step 4. These are multiplied by a scalar to insure that is in the simple ratio of whole numbers.

For example, the face of a lattice that does not intersect the y or z axis would be (100), while a plane along
the body diagonal would be the (111) plane. An illustration of this along with the (111) and (110) planes is
given in Figure 1.22.
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Figure 1.22: Examples of Miller indices notation for crystal planes.

As with crystal directions, Miller indices directions may be grouped in families. Individual Miller indices
are given in parentheses (hkl), while braces {hkl} are placed around the indices of a family of planes. For
example, (001), (100), and (010) are all in the {100} family of planes, for a cubic lattice.

1.4.3 Description of crystal structures

Crystal structures may be described in a number of ways. The most common manner is to refer to the size
and shape of the unit cell and the positions of the atoms (or ions) within the cell. However, this information is
sometimes insu�cient to allow for an understanding of the true structure in three dimensions. Consideration
of several unit cells, the arrangement of the atoms with respect to each other, the number of other atoms
they in contact with, and the distances to neighboring atoms, often will provide a better understanding.
A number of methods are available to describe extended solid-state structures. The most applicable with
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regard to elemental and compound semiconductor, metals and the majority of insulators is the close packing
approach.

1.4.3.1 Close packed structures: hexagonal close packing and cubic close packing

Many crystal structures can be described using the concept of close packing. This concept requires that
the atoms (ions) are arranged so as to have the maximum density. In order to understand close packing
in three dimensions, the most e�cient way for equal sized spheres to be packed in two dimensions must be
considered.

The most e�cient way for equal sized spheres to be packed in two dimensions is shown in Figure 1.23,
in which it can be seen that each sphere (the dark gray shaded sphere) is surrounded by, and is in contact
with, six other spheres (the light gray spheres in Figure 1.23). It should be noted that contact with six other
spheres the maximum possible is the spheres are the same size, although lower density packing is possible.
Close packed layers are formed by repetition to an in�nite sheet. Within these close packed layers, three
close packed rows are present, shown by the dashed lines in Figure 1.23.

Figure 1.23: Schematic representation of a close packed layer of equal sized spheres. The close packed
rows (directions) are shown by the dashed lines.

The most e�cient way for equal sized spheres to be packed in three dimensions is to stack close packed
layers on top of each other to give a close packed structure. There are two simple ways in which this can be
done, resulting in either a hexagonal or cubic close packed structures.

1.4.3.1.1 Hexagonal close packed

If two close packed layers A and B are placed in contact with each other so as to maximize the density,
then the spheres of layer B will rest in the hollow (vacancy) between three of the spheres in layer A. This
is demonstrated in Figure 1.24. Atoms in the second layer, B (shaded light gray), may occupy one of two
possible positions (Figure 1.24a or b) but not both together or a mixture of each. If a third layer is placed on
top of layer B such that it exactly covers layer A, subsequent placement of layers will result in the following
sequence ...ABABAB.... This is known as hexagonal close packing or hcp.
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Figure 1.24: Schematic representation of two close packed layers arranged in A (dark grey) and B (light
grey) positions. The alternative stacking of the B layer is shown in (a) and (b).

The hexagonal close packed cell is a derivative of the hexagonal Bravais lattice system (Figure 1.20) with
the addition of an atom inside the unit cell at the coordinates (1/3,2/3,1/2). The basal plane of the unit
cell coincides with the close packed layers (Figure 1.25). In other words the close packed layer makes-up the
{001} family of crystal planes.

Figure 1.25: A schematic projection of the basal plane of the hcp unit cell on the close packed layers.

The �packing fraction� in a hexagonal close packed cell is 74.05%; that is 74.05% of the total volume
is occupied. The packing fraction or density is derived by assuming that each atom is a hard sphere in
contact with its nearest neighbors. Determination of the packing fraction is accomplished by calculating the
number of whole spheres per unit cell (2 in hcp), the volume occupied by these spheres, and a comparison
with the total volume of a unit cell. The number gives an idea of how �open� or �lled a structure is. By
comparison, the packing fraction for body-centered cubic (Figure 1.20) is 68% and for diamond cubic (an
important semiconductor structure to be described later) is it 34%.

1.4.3.1.2 Cubic close packed: face-centered cubic

In a similar manner to the generation of the hexagonal close packed structure, two close packed layers are
stacked (Figure 1.23) however, the third layer (C) is placed such that it does not exactly cover layer A,
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while sitting in a set of troughs in layer B (Figure 1.26), then upon repetition the packing sequence will be
...ABCABCABC.... This is known as cubic close packing or ccp.

Figure 1.26: Schematic representation of the three close packed layers in a cubic close packed arrange-
ment: A (dark grey), B (medium grey), and C (light grey).

The unit cell of cubic close packed structure is actually that of a face-centered cubic (fcc) Bravais lattice.
In the fcc lattice the close packed layers constitute the {111} planes. As with the hcp lattice packing
fraction in a cubic close packed (fcc) cell is 74.05%. Since face centered cubic or fcc is more commonly used
in preference to cubic close packed (ccp) in describing the structures, the former will be used throughout
this text.

1.4.3.2 Coordination number

The coordination number of an atom or ion within an extended structure is de�ned as the number of nearest
neighbor atoms (ions of opposite charge) that are in contact with it. A slightly di�erent de�nition is often
used for atoms within individual molecules: the number of donor atoms associated with the central atom or
ion. However, this distinction is rather arti�cial, and both can be employed.

The coordination numbers for metal atoms in a molecule or complex are commonly 4, 5, and 6, but all
values from 2 to 9 are known and a few examples of higher coordination numbers have been reported. In
contrast, common coordination numbers in the solid state are 3, 4, 6, 8, and 12. For example, the atom in
the center of body-centered cubic lattice has a coordination number of 8, because it touches the eight atoms
at the corners of the unit cell, while an atom in a simple cubic structure would have a coordination number
of 6. In both fcc and hcp lattices each of the atoms have a coordination number of 12.

1.4.3.3 Octahedral and tetrahedral vacancies

As was mentioned above, the packing fraction in both fcc and hcp cells is 74.05%, leaving 25.95% of the
volume un�lled. The un�lled lattice sites (interstices) between the atoms in a cell are called interstitial sites
or vacancies. The shape and relative size of these sites is important in controlling the position of additional
atoms. In both fcc and hcp cells most of the space within these atoms lies within two di�erent sites known
as octahedral sites and tetrahedral sites. The di�erence between the two lies in their �coordination number�,
or the number of atoms surrounding each site. Tetrahedral sites (vacancies) are surrounded by four atoms
arranged at the corners of a tetrahedron. Similarly, octahedral sites are surrounded by six atoms which
make-up the apices of an octahedron. For a given close packed lattice an octahedral vacancy will be larger
than a tetrahedral vacancy.

Within a face centered cubic lattice, the eight tetrahedral sites are positioned within the cell, at the
general fractional coordinate of (n/4,n/4,n/4) where n = 1 or 3, e.g., (1/4,1/4,1/4), (1/4,1/4,3/4), etc. The
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octahedral sites are located at the center of the unit cell (1/2,1/2,1/2), as well as at each of the edges of
the cell, e.g., (1/2,0,0). In the hexagonal close packed system, the tetrahedral sites are at (0,0,3/8) and
(1/3,2/3,7/8), and the octahedral sites are at (1/3,1/3,1/4) and all symmetry equivalent positions.

1.4.3.4 Important structure types

The majority of crystalline materials do not have a structure that �ts into the one atom per site simple
Bravais lattice. A number of other important crystal structures are found, however, only a few of these
crystal structures are those of which occur for the elemental and compound semiconductors and the majority
of these are derived from fcc or hcp lattices. Each structural type is generally de�ned by an archetype, a
material (often a naturally occurring mineral) which has the structure in question and to which all the
similar materials are related. With regard to commonly used elemental and compound semiconductors the
important structures are diamond, zinc blende, Wurtzite, and to a lesser extent chalcopyrite. However, rock
salt, β-tin, cinnabar and cesium chloride are observed as high pressure or high temperature phases and are
therefore also discussed. The following provides a summary of these structures. Details of the full range of
solid-state structures are given elsewhere.

1.4.3.4.1 Diamond Cubic

The diamond cubic structure consists of two interpenetrating face-centered cubic lattices, with one o�set 1/4
of a cube along the cube diagonal. It may also be described as face centered cubic lattice in which half of
the tetrahedral sites are �lled while all the octahedral sites remain vacant. The diamond cubic unit cell is
shown in Figure 1.27. Each of the atoms (e.g., C) is four coordinate, and the shortest interatomic distance
(C-C) may be determined from the unit cell parameter (a).

(1.25)

Figure 1.27: Unit cell structure of a diamond cubic lattice showing the two interpenetrating face-
centered cubic lattices.
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1.4.3.4.2 Zinc blende

This is a binary phase (ME) and is named after its archetype, a common mineral form of zinc sul�de (ZnS).
As with the diamond lattice, zinc blende consists of the two interpenetrating fcc lattices. However, in zinc
blende one lattice consists of one of the types of atoms (Zn in ZnS), and the other lattice is of the second
type of atom (S in ZnS). It may also be described as face centered cubic lattice of S atoms in which half
of the tetrahedral sites are �lled with Zn atoms. All the atoms in a zinc blende structure are 4-coordinate.
The zinc blende unit cell is shown in Figure 1.28. A number of inter-atomic distances may be calculated for
any material with a zinc blende unit cell using the lattice parameter (a).

(1.26)

(1.27)

Figure 1.28: Unit cell structure of a zinc blende (ZnS) lattice. Zinc atoms are shown in green (small),
sulfur atoms shown in red (large), and the dashed lines show the unit cell.

1.4.3.4.3 Chalcopyrite

The mineral chalcopyrite CuFeS2 is the archetype of this structure. The structure is tetragonal (a = b 6=
c, α = β = γ = 90 ◦, and is essentially a superlattice on that of zinc blende. Thus, is easiest to imagine
that the chalcopyrite lattice is made-up of a lattice of sulfur atoms in which the tetrahedral sites are �lled
in layers, ...FeCuCuFe..., etc. (Figure 1.29). In such an idealized structure c = 2a, however, this is not true
of all materials with chalcopyrite structures.
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Figure 1.29: Unit cell structure of a chalcopyrite lattice. Copper atoms are shown in blue, iron atoms
are shown in green and sulfur atoms are shown in yellow. The dashed lines show the unit cell.

1.4.3.4.4 Rock salt

As its name implies the archetypal rock salt structure is NaCl (table salt). In common with the zinc blende
structure, rock salt consists of two interpenetrating face-centered cubic lattices. However, the second lattice
is o�set 1/2a along the unit cell axis. It may also be described as face centered cubic lattice in which all of
the octahedral sites are �lled, while all the tetrahedral sites remain vacant, and thus each of the atoms in the
rock salt structure are 6-coordinate. The rock salt unit cell is shown in Figure 1.30. A number of inter-atomic
distances may be calculated for any material with a rock salt structure using the lattice parameter (a).

(1.28)

(1.29)
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Figure 1.30: Unit cell structure of a rock salt lattice. Sodium ions are shown in purple (small spheres)
and chloride ions are shown in red (large spheres).

1.4.3.4.5 Cinnabar

Cinnabar, named after the archetype mercury sul�de, HgS, is a distorted rock salt structure in which the
resulting cell is rhombohedral (trigonal) with each atom having a coordination number of six.

1.4.3.4.6 Wurtzite

This is a hexagonal form of the zinc sul�de. It is identical in the number of and types of atoms, but it is
built from two interpenetrating hcp lattices as opposed to the fcc lattices in zinc blende. As with zinc blende
all the atoms in a wurtzite structure are 4-coordinate. The wurtzite unit cell is shown in Figure 1.31. A
number of inter atomic distances may be calculated for any material with a wurtzite cell using the lattice
parameter (a).

(1.30)

(1.31)

However, it should be noted that these formulae do not necessarily apply when the ratio a/c is di�erent from
the ideal value of 1.632.
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Figure 1.31: Unit cell structure of a wurtzite lattice. Zinc atoms are shown in green (small spheres),
sulfur atoms shown in red (large spheres), and the dashed lines show the unit cell.

1.4.3.4.7 Cesium Chloride

The cesium chloride structure is found in materials with large cations and relatively small anions. It has
a simple (primitive) cubic cell (Figure 1.20) with a chloride ion at the corners of the cube and the cesium
ion at the body center. The coordination numbers of both Cs+ and Cl-, with the inner atomic distances
determined from the cell lattice constant (a).

(1.32)

(1.33)

1.4.3.4.8 β-Tin.

The room temperature allotrope of tin is β-tin or white tin. It has a tetragonal structure, in which each tin
atom has four nearest neighbors (Sn-Sn = 3.016 Å) arranged in a very �attened tetrahedron, and two next
nearest neighbors (Sn-Sn = 3.175 Å). The overall structure of β-tin consists of fused hexagons, each being
linked to its neighbor via a four-membered Sn4 ring.

1.4.4 Defects in crystalline solids

Up to this point we have only been concerned with ideal structures for crystalline solids in which each atom
occupies a designated point in the crystal lattice. Unfortunately, defects ordinarily exist in equilibrium
between the crystal lattice and its environment. These defects are of two general types: point defects and
extended defects. As their names imply, point defects are associated with a single crystal lattice site, while
extended defects occur over a greater range.
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1.4.4.1 Point defects: �too many or too few� or �just plain wrong�

Point defects have a signi�cant e�ect on the properties of a semiconductor, so it is important to understand
the classes of point defects and the characteristics of each type. Figure 1.32 summarizes various classes of
native point defects, however, they may be divided into two general classes; defects with the wrong number
of atoms (de�ciency or surplus) and defects where the identity of the atoms is incorrect.

Figure 1.32: Point defects in a crystal lattice.

1.4.4.1.1 Interstitial Impurity

An interstitial impurity occurs when an extra atom is positioned in a lattice site that should be vacant in
an ideal structure (Figure 1.32b). Since all the adjacent lattice sites are �lled the additional atom will have
to squeeze itself into the interstitial site, resulting in distortion of the lattice and alteration in the local
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electronic behavior of the structure. Small atoms, such as carbon, will prefer to occupy these interstitial
sites. Interstitial impurities readily di�use through the lattice via interstitial di�usion, which can result in
a change of the properties of a material as a function of time. Oxygen impurities in silicon generally are
located as interstitials.

1.4.4.1.2 Vacancies

The converse of an interstitial impurity is when there are not enough atoms in a particular area of the
lattice. These are called vacancies. Vacancies exist in any material above absolute zero and increase in
concentration with temperature. In the case of compound semiconductors, vacancies can be either cation
vacancies (Figure 1.32c) or anion vacancies (Figure 1.32d), depending on what type of atom are �missing�.

1.4.4.1.3 Substitution

Substitution of various atoms into the normal lattice structure is common, and used to change the electronic
properties of both compound and elemental semiconductors. Any impurity element that is incorporated
during crystal growth can occupy a lattice site. Depending on the impurity, substitution defects can greatly
distort the lattice and/or alter the electronic structure. In general, cations will try to occupy cation lattice
sites (Figure 1.32e), and anion will occupy the anion site (Figure 1.32f). For example, a zinc impurity in
GaAs will occupy a gallium site, if possible, while a sulfur, selenium and tellurium atoms would all try to
substitute for an arsenic. Some impurities will occupy either site indiscriminately, e.g., Si and Sn occupy
both Ga and As sites in GaAs.

1.4.4.1.4 Antisite Defects

Antisite defects are a particular form of substitution defect, and are unique to compound semiconductors.
An antisite defect occurs when a cation is misplaced on an anion lattice site or vice versa (Figure 1.32g and
h). Dependant on the arrangement these are designated as either AB antisite defects or BA antisite defects.
For example, if an arsenic atom is on a gallium lattice site the defect would be an AsGa defect. Antisite
defects involve �tting into a lattice site atoms of a di�erent size than the rest of the lattice, and therefore
this often results in a localized distortion of the lattice. In addition, cations and anions will have a di�erent
number of electrons in their valence shells, so this substitution will alter the local electron concentration and
the electronic properties of this area of the semiconductor.

1.4.4.2 Extended Defects: Dislocations in a Crystal Lattice

Extended defects may be created either during crystal growth or as a consequence of stress in the crystal
lattice. The plastic deformation of crystalline solids does not occur such that all bonds along a plane are
broken and reformed simultaneously. Instead, the deformation occurs through a dislocation in the crystal
lattice. Figure 1.33 shows a schematic representation of a dislocation in a crystal lattice. Two features of
this type of dislocation are the presence of an extra crystal plane, and a large void at the dislocation core.
Impurities tend to segregate to the dislocation core in order to relieve strain from their presence.
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Figure 1.33: Dislocation in a crystal lattice.

1.4.5 Epitaxy

Epitaxy, is a transliteration of two Greek words epi, meaning "upon", and taxis, meaning "ordered". With
respect to crystal growth it applies to the process of growing thin crystalline layers on a crystal substrate. In
epitaxial growth, there is a precise crystal orientation of the �lm in relation to the substrate. The growth of
epitaxial �lms can be done by a number of methods including molecular beam epitaxy, atomic layer epitaxy,
and chemical vapor deposition, all of which will be described later.

Epitaxy of the same material, such as a gallium arsenide �lm on a gallium arsenide substrate, is called
homoepitaxy, while epitaxy where the �lm and substrate material are di�erent is called heteroepitaxy.
Clearly, in homoepitaxy, the substrate and �lm will have the identical structure, however, in heteroepitaxy, it
is important to employ where possible a substrate with the same structure and similar lattice parameters. For
example, zinc selenide (zinc blende, a = 5.668 Å) is readily grown on gallium arsenide (zinc blende, a = 5.653
Å). Alternatively, epitaxial crystal growth can occur where there exists a simple relationship between the
structures of the substrate and crystal layer, such as is observed between Al2O3 (100) on Si (100). Whichever
route is chosen a close match in the lattice parameters is required, otherwise, the strains induced by the
lattice mismatch results in distortion of the �lm and formation of dislocations. If the mismatch is signi�cant
epitaxial growth is not energetically favorable, causing a textured �lm or polycrystalline untextured �lm to
be grown. As a general rule of thumb, epitaxy can be achieved if the lattice parameters of the two materials
are within about 5% of each other. For good quality epitaxy, this should be less than 1%. The larger the
mismatch, the larger the strain in the �lm. As the �lm gets thicker and thicker, it will try to relieve the
strain in the �lm, which could include the loss of epitaxy of the growth of dislocations. It is important to
note that the <100> directions of a �lm must be parallel to the <100> direction of the substrate. In some
cases, such as Fe on MgO, the [111] direction is parallel to the substrate [100]. The epitaxial relationship is
speci�ed by giving �rst the plane in the �lm that is parallel to the substrate [100].
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1.5 Structures of Element and Compound Semiconductors5

1.5.1 Introduction

A single crystal of either an elemental (e.g., silicon) or compound (e.g., gallium arsenide) semiconductor
forms the basis of almost all semiconductor devices. The ability to control the electronic and opto-electronic
properties of these materials is based on an understanding of their structure. In addition, the metals and
many of the insulators employed within a microelectronic device are also crystalline.

1.5.2 Group IV (14) elements

Each of the semiconducting phases of the group IV (14) elements, C (diamond), Si, Ge, and α-Sn, adopt the
diamond cubic structure (Figure 1.34). Their lattice constants (a, Å) and densities (ρ, g/cm3) are given in
Table 1.3.

Figure 1.34: Unit cell structure of a diamond cubic lattice showing the two interpenetrating face-
centered cubic lattices.

Element Lattice parameter, a (Å) Density (g/cm3)

carbon (diamond) 3.56683(1) 3.51525

silicon 5.4310201(3) 2.319002

germanium 5.657906(1) 5.3234

tin (α-Sn) 6.4892(1) 7.285

Table 1.3: Lattice parameters and densities (measured at 298 K) for the diamond cubic forms of the group
IV (14) elements.

As would be expected the lattice parameter increase in the order C < Si < Ge < α-Sn. Silicon and
germanium form a continuous series of solid solutions with gradually varying parameters. It is worth noting
the high degree of accuracy that the lattice parameters are known for high purity crystals of these elements.
In addition, it is important to note the temperature at which structural measurements are made, since the

5This content is available online at <http://cnx.org/content/m23905/1.6/>.

Available for free at Connexions <http://cnx.org/content/col10719/1.9>



39

lattice parameters are temperature dependent (Figure 1.35). The lattice constant (a), in Å, for high purity
silicon may be calculated for any temperature (T) over the temperature range 293 - 1073 K by the formula
shown below.

aT = 5.4304 + 1.8138 X 10-5 (T - 298.15 K) + 1.542 X 10-9 (T � 298.15 K)

Figure 1.35: Temperature dependence of the lattice parameter for (a) Si and (b) Ge.

Even though the diamond cubic forms of Si and Ge are the only forms of direct interest to semiconductor
devices, each exists in numerous crystalline high pressure and meta-stable forms. These are described along
with their interconversions, in Table 1.4.
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Phase Structure Remarks

Si I diamond cubic stable at normal pressure

Si II grey tin structure formed from Si I or Si V above 14 GPa

Si III cubic metastable, formed from Si II above 10 GPa

Si IV hexagonal

Si V unidenti�ed stable above 34 GPa, formed from Si II above 16 GPa

Si VI hexagonal close packed stable above 45 GPa

Ge I diamond cubic low-pressure phase

Ge II β-tin structure formed from Ge I above 10 GPa

Ge III tetragonal formed by quenching Ge II at low pressure

Ge IV body centered cubic formed by quenching Ge II to 1 atm at 200 K

Table 1.4: High pressure and metastable phases of silicon and germanium.

1.5.3 Group III-V (13-15) compounds

The stable phases for the arsenides, phosphides and antimonides of aluminum, gallium and indium all
exhibit zinc blende structures (Figure 1.36). In contrast, the nitrides are found as wurtzite structures (e.g.,
Figure 1.37). The structure, lattice parameters, and densities of the III-V compounds are given in Table 1.5.
It is worth noting that contrary to expectation the lattice parameter of the gallium compounds is smaller
than their aluminum homolog; for GaAs a = 5.653 Å; AlAs a = 5.660 Å. As with the group IV elements the
lattice parameters are highly temperature dependent; however, additional variation arises from any deviation
from absolute stoichiometry. These e�ects are shown in Figure 1.38.

Figure 1.36: Unit cell structure of a zinc blende (ZnS) lattice. Zinc atoms are shown in green (small),
sulfur atoms shown in red (large), and the dashed lines show the unit cell.

Available for free at Connexions <http://cnx.org/content/col10719/1.9>



41

Figure 1.37: Unit cell structure of a wurtzite lattice. Zinc atoms are shown in green (small), sulfur
atoms shown in red (large), and the dashed lines show the unit cell.

Compound Structure Lattice parameter (Å) Density (g/cm3)

AlN wurtzite a = 3.11(1), c = 4.98(1) 3.255

AlP zinc blende a = 5.4635(4) 2.40(1)

AlAs zinc blende a = 5.660 3.760

AlSb zinc blende a = 6.1355(1) 4.26

GaN wurtzite a = 3.190, c = 5.187

GaP zinc blende a = 5.4505(2) 4.138

GaAs zinc blende a = 5.65325(2) 5.3176(3)

InN wurtzite a = 3.5446, c = 5.7034 6.81

InP zinc blende a = 5.868(1) 4.81

InAs zinc blende a = 6.0583 5.667

InSb zinc blende a = 6.47937 5.7747(4)

Table 1.5: Lattice parameters and densities (measured at 298 K) for the III-V (13-15) compound
semiconductors. Estimated standard deviations given in parentheses.
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Figure 1.38: Temperature dependence of the lattice parameter for stoichiometric GaAs and crystals
with either Ga or As excess.

The homogeneity of structures of alloys for a wide range of solid solutions to be formed between III-
V compounds in almost any combination. Two classes of ternary alloys are formed: IIIx-III1-x-V (e.g.,
Alx-Ga1-x-As) and III-V1-x-Vx (e.g., Ga-As1-x-Px) . While quaternary alloys of the type IIIx-III1-x-Vy-V1-y

allow for the growth of materials with similar lattice parameters, but a broad range of band gaps. A very
important ternary alloy, especially in optoelectronic applications, is Alx-Ga1-x-As and its lattice parameter
(a) is directly related to the composition (x).

a = 5.6533 + 0.0078 x
Not all of the III-V compounds have well characterized high-pressure phases. however, in each case

where a high-pressure phase is observed the coordination number of both the group III and group V element
increases from four to six. Thus, AlP undergoes a zinc blende to rock salt transformation at high pressure
above 170 kbar, while AlSb and GaAs form orthorhombic distorted rock salt structures above 77 and 172
kbar, respectively. An orthorhombic structure is proposed for the high-pressure form of InP (>133 kbar).
Indium arsenide (InAs) undergoes two-phase transformations. The zinc blende structure is converted to a
rock salt structure above 77 kbar, which in turn forms a β-tin structure above 170 kbar.

1.5.4 Group II-VI (12-16) compounds

The structures of the II-VI compound semiconductors are less predictable than those of the III-V compounds
(above), and while zinc blende structure exists for almost all of the compounds there is a stronger tendency
towards the hexagonal wurtzite form. In several cases the zinc blende structure is observed under ambient
conditions, but may be converted to the wurtzite form upon heating. In general the wurtzite form predom-
inates with the smaller anions (e.g., oxides), while the zinc blende becomes the more stable phase for the
larger anions (e.g., tellurides). One exception is mercury sul�de (HgS) that is the archetype for the trigonal
cinnabar phase. Table 1.6 lists the stable phase of the chalcogenides of zinc, cadmium and mercury, along
with their high temperature phases where applicable. Solid solutions of the II-VI compounds are not as
easily formed as for the III-V compounds; however, two important examples are ZnSxSe1-x and CdxHg1-xTe.
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Compound Structure Lattice parameter (Å) Density (g/cm3)

ZnS zinc blende a = 5.410 4.075

wurtzite a = 3.822, c = 6.260 4.087

ZnSe Zinc blende a = 5.668 5.27

ZnTe Zinc blende a = 6.10 5.636

CdS wurtzite a = 4.136, c = 6.714 4.82

CdSe wurtzite a = 4.300, c = 7.011 5.81

CdTe Zinc blende a = 6.482 5.87

HgS cinnabar a = 4.149, c = 9.495

Zinc blende a = 5.851 7.73

HgSe Zinc blende a = 6.085 8.25

HgTe Zinc blende a = 6.46 8.07

Table 1.6: Lattice parameters and densities (measured at 298 K) for the II-VI (12-16) compound
semiconductors.

The zinc chalcogenides all transform to a cesium chloride structure under high pressures, while the
cadmium compounds all form rock salt high-pressure phases (Figure 1.39). Mercury selenide (HgSe) and
mercury telluride (HgTe) convert to the mercury sul�de archetype structure, cinnabar, at high pressure.

Figure 1.39: Unit cell structure of a rock salt lattice. Sodium ions are shown in purple and chloride
ions are shown in red.

1.5.5 I-III-VI2 (11-13-16) compounds

Nearly all I-III-VI2 compounds at room temperature adopt the chalcopyrite structure (Figure 1.40). The
cell constants and densities are given in Table 1.7. Although there are few reports of high temperature or
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high-pressure phases, AgInS2 has been shown to exist as a high temperature orthorhombic polymorph (a =
6.954, b = 8.264, and c = 6.683 Å), and AgInTe2 forms a cubic phase at high pressures.

Figure 1.40: Unit cell structure of a chalcopyrite lattice. Copper atoms are shown in blue, iron atoms
are shown in green and sulfur atoms are shown in yellow. The dashed lines show the unit cell.
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Compound Lattice parameter a (Å) Lattice parameter c (Å) Density (g.cm3)

CuAlS2 5.32 10.430 3.45

CuAlSe2 5.61 10.92 4.69

CuAlTe2 5.96 11.77 5.47

CuGaS2 5.35 10.46 4.38

CuGaSe2 5.61 11.00 5.57

CuGaTe2 6.00 11.93 5.95

CuInS2 5.52 11.08 4.74

CuInSe2 5.78 11.55 5.77

CuInTe2 6.17 12.34 6.10

AgAlS2 6.30 11.84 6.15

AgGaS2 5.75 10.29 4.70

AgGaSe2 5.98 10.88 5.70

AgGaTe2 6.29 11.95 6.08

AgInS2 5.82 11.17 4.97

AgInSe2 6.095 11.69 5.82

AgInTe2 6.43 12.59 6.96

Table 1.7: Chalcopyrite lattice parameters and densities (measured at 298 K) for the I-III-VI compound
semiconductors. Lattice parameters for tetragonal cell.

Of the I-III-VI2 compounds, the copper indium chalcogenides (CuInE2) are certainly the most studied
for their application in solar cells. One of the advantages of the copper indium chalcogenide compounds
is the formation of solid solutions (alloys) of the formula CuInE2-xE'x, where the composition variable
(x) varies from 0 to 2. The CuInS2-xSex and CuInSe2-xTex systems have also been examined, as has the
CuGayIn1-yS2-xSex quaternary system. As would be expected from a consideration of the relative ionic
radii of the chalcogenides the lattice parameters of the CuInS2-xSex alloy should increase with increased
selenium content. Vergard's law requires the lattice constant for a linear solution of two semiconductors to
vary linearly with composition (e.g., as is observed for AlxGa1-xAs), however, the variation of the tetragonal
lattice constants (a and c) with composition for CuInS2-xSx are best described by the parabolic relationships.

a = 5.532 + 0.0801 x + 0.0260 x2

c = 11.156 + 0.1204 x + 0.0611 x2

A similar relationship is observed for the CuInSe2-xTex alloys.
a = 5.783 + 0.1560 x + 0.0212 x2

c = 11.628 + 0.3340 x + 0.0277 x2

The large di�erence in ionic radii between S and Te (0.37 Å) prevents formation of solid solutions in the
CuInS2-xTex system, however, the single alloy CuInS1.5Te0.5 has been reported.

1.5.6 Orientation e�ects

Once single crystals of high purity silicon or gallium arsenide are produced they are cut into wafers such that
the exposed face of these wafers is either the crystallographic {100} or {111} planes. The relative structure
of these surfaces are important with respect to oxidation, etching and thin �lm growth. These processes are
orientation-sensitive; that is, they depend on the direction in which the crystal slice is cut.
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1.5.6.1 Atom density and dangling bonds

The principle planes in a crystal may be di�erentiated in a number of ways, however, the atom and/or bond
density are useful in predicting much of the chemistry of semiconductor surfaces. Since both silicon and
gallium arsenide are fcc structures and the {100} and {111} are the only technologically relevant surfaces,
discussions will be limited to fcc {100} and {111}.

The atom density of a surface may be de�ned as the number of atoms per unit area. Figure 1.41 shows
a schematic view of the {111} and {100} planes in a fcc lattice. The {111} plane consists of a hexagonal
close packed array in which the crystal directions within the plane are oriented at 60 ◦ to each other. The
hexagonal packing and the orientation of the crystal directions are indicated in Figure 1.41b as an overlaid
hexagon. Given the intra-planar inter-atomic distance may be de�ned as a function of the lattice parameter,
the area of this hexagon may be readily calculated. For example in the case of silicon, the hexagon has an
area of 38.30 Å2. The number of atoms within the hexagon is three: the atom in the center plus 1/3 of
each of the six atoms at the vertices of the hexagon (each of the atoms at the hexagons vertices is shared
by three other adjacent hexagons). Thus, the atom density of the {111} plane is calculated to be 0.0783
Å-2. Similarly, the atom density of the {100} plane may be calculated. The {100} plane consists of a square
array in which the crystal directions within the plane are oriented at 90 ◦ to each other. Since the square
is coincident with one of the faces of the unit cell the area of the square may be readily calculated. For
example in the case of silicon, the square has an area of 29.49 Å2. The number of atoms within the square is
2: the atom in the center plus 1/4 of each of the four atoms at the vertices of the square (each of the atoms
at the corners of the square are shared by four other adjacent squares). Thus, the atom density of the {100}
plane is calculated to be 0.0678 Å-2. While these values for the atom density are speci�c for silicon, their
ratio is constant for all diamond cubic and zinc blende structures: {100}:{111} = 1:1.155. In general, the
fewer dangling bonds the more stable a surface structure.

Figure 1.41: Schematic representation of the (111) and (100) faces of a face centered cubic (fcc) lattice
showing the relationship between the close packed rows.

An atom inside a crystal of any material will have a coordination number (n) determined by the structure
of the material. For example, all atoms within the bulk of a silicon crystal will be in a tetrahedral four-
coordinate environment (n = 4). However, at the surface of a crystal the atoms will not make their full
compliment of bonds. Each atom will therefore have less nearest neighbors than an atom within the bulk
of the material. The missing bonds are commonly called dangling bonds. While this description is not
particularly accurate it is, however, widely employed and as such will be used herein. The number of
dangling bonds may be de�ned as the di�erence between the ideal coordination number (determined by the
bulk crystal structure) and the actual coordination number as observed at the surface.

Figure 1.42 shows a section of the {111} surfaces of a diamond cubic lattice viewed perpendicular to the
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{111} plane. The atoms within the bulk have a coordination number of four. In contrast, the atoms at
the surface (e.g., the atom shown in blue in Figure 1.42) are each bonded to just three other atoms (the
atoms shown in red in Figure 1.42), thus each surface atom has one dangling bond. As can be seen from
Figure 1.43, which shows the atoms at the {100} surface viewed perpendicular to the {100} plane, each
atom at the surface (e.g., the atom shown in blue in Figure 1.43) is only coordinated to two other atoms
(the atoms shown in red in Figure 1.43), leaving two dangling bonds per atom. It should be noted that
the same number of dangling bonds are found for the {111} and {100} planes of a zinc blende lattice. The
ratio of dangling bonds for the {100} and {111} planes of all diamond cubic and zinc blende structures is
{100}:{111} = 2:1. Furthermore, since the atom densities of each plane are known then the ratio of the
dangling bond densities is determined to be: {100}:{111} = 1:0.577.

Figure 1.42: A section of the {111} surfaces of a diamond cubic lattice viewed perpendicular to the
{111} plane.
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Figure 1.43: A section of the {100} surface of a diamond cubic lattice viewed perpendicular to the
{100} plane.

1.5.6.2 Silicon

For silicon, the {111} planes are closer packed than the {100} planes. As a result, growth of a silicon crystal
is therefore slowest in the <111> direction, since it requires laying down a close packed atomic layer upon
another layer in its closest packed form. As a consequence <111> Si is the easiest to grow, and therefore
the least expensive.

The dissolution or etching of a crystal is related to the number of broken bonds already present at the
surface: the fewer bonds to be broken in order to remove an individual atom from a crystal, the easier it
will be to dissolve the crystal. As a consequence of having only one dangling bond (requiring three bonds to
be broken) etching silicon is slowest in the <111> direction. The electronic properties of a silicon wafer are
also related to the number of dangling bonds.

Silicon microcircuits are generally formed on a single crystal wafer that is diced after fabrication by either
sawing part way through the wafer thickness or scoring (scribing) the surface, and then physically breaking.
The physical breakage of the wafer occurs along the natural cleavage planes, which in the case of silicon are
the {111} planes.

1.5.6.3 Gallium arsenide

The zinc blende lattice observed for gallium arsenide results in additional considerations over that of silicon.
Although the {100} plane of GaAs is structurally similar to that of silicon, two possibilities exist: a face
consisting of either all gallium atoms or all arsenic atoms. In either case the surface atoms have two dangling
bonds, and the properties of the face are independent of whether the face is gallium or arsenic.

The {111} plane also has the possibility of consisting of all gallium or all arsenic. However, unlike the
{100} planes there is a signi�cant di�erence between the two possibilities. Figure 1.36 shows the gallium
arsenide structure represented by two interpenetrating fcc lattices. The [111] axis is vertical within the plane
of the page. Although the structure consists of alternate layers of gallium and arsenic stacked along the [111]
axis, the distance between the successive layers alternates between large and small. Assigning arsenic as

the parent lattice the order of the layers in the [111] direction is As-Ga-As-Ga-As-Ga, while in the
[
−−−
111

]
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direction the layers are ordered, Ga-As-Ga-As-Ga-As (Figure 1.44). In silicon these two directions are of
course identical. The surface of a crystal would be either arsenic, with three dangling bonds, or gallium,
with one dangling bond. Clearly, the latter is energetically more favorable. Thus, the (111) plane shown in

Figure 1.44 is called the (111) Ga face. Conversely, the
[
−−−
111

]
plane would be either gallium, with three

dangling bonds, or arsenic, with one dangling bond. Again, the latter is energetically more favorable and

the
[
−−−
111

]
plane is therefore called the (111) As face.

Figure 1.44: The (111) Ga face of GaAs showing a surface layer containing gallium atoms (green) with
one dangling bond per gallium and three bonds to the arsenic atoms (red) in the lower layer.

The (111) As is distinct from that of (111) Ga due to the di�erence in the number of electrons at the
surface. As a consequence, the (111) As face etches more rapidly than the (111) Ga face. In addition, surface
evaporation below 770 ◦C occurs more rapidly at the (111) As face.
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